Sajid Mohamed, Gijs van der Veen, Hans Kuppens, Matias Vierimaa, Tassos Kanellos, Henry Stoutjesdijk, Riccardo Masiero, Kalle Määttä, Jan Wytze van der Weit, Gabriel Ribeiro, Ansgar Bergmann, Davide Colombo, Javier Arenas, Alfie Keary, Martin Goubej, Benjamin Rouxel, Pekka Kilpeläinen, Roberts Kadikis, Mikel Armendia, Petr Blaha, Joep Stokkermans, Martin Čech, Arend-Jan Beltman . The IMOCO4.E reference framework for intelligent motion control systems. IEEE International Conference on Emerging Technologies and Factory Automation, 1-8 pp. IEEE, 2023.
Bibtex citāts:
Bibtex citāts:
@inproceedings{15654_2023,
author = {Sajid Mohamed and Gijs van der Veen and Hans Kuppens and Matias Vierimaa and Tassos Kanellos and Henry Stoutjesdijk and Riccardo Masiero and Kalle Määttä and Jan Wytze van der Weit and Gabriel Ribeiro and Ansgar Bergmann and Davide Colombo and Javier Arenas and Alfie Keary and Martin Goubej and Benjamin Rouxel and Pekka Kilpeläinen and Roberts Kadikis and Mikel Armendia and Petr Blaha and Joep Stokkermans and Martin Čech and Arend-Jan Beltman },
title = {The IMOCO4.E reference framework for intelligent motion control systems},
journal = {IEEE International Conference on Emerging Technologies and Factory Automation},
pages = {1-8},
publisher = {IEEE},
year = {2023}
}
author = {Sajid Mohamed and Gijs van der Veen and Hans Kuppens and Matias Vierimaa and Tassos Kanellos and Henry Stoutjesdijk and Riccardo Masiero and Kalle Määttä and Jan Wytze van der Weit and Gabriel Ribeiro and Ansgar Bergmann and Davide Colombo and Javier Arenas and Alfie Keary and Martin Goubej and Benjamin Rouxel and Pekka Kilpeläinen and Roberts Kadikis and Mikel Armendia and Petr Blaha and Joep Stokkermans and Martin Čech and Arend-Jan Beltman },
title = {The IMOCO4.E reference framework for intelligent motion control systems},
journal = {IEEE International Conference on Emerging Technologies and Factory Automation},
pages = {1-8},
publisher = {IEEE},
year = {2023}
}
Anotācija: Intelligent motion control is integral to modern cyber-physical systems. However, smart integration of intelligent motion control with commercial and industrial systems requires domain expertise, industrial 'know-how' of the production processes, and resilient adaptation for the various engineering phases. The challenge is amplified with the adoption of advanced digital twin approaches, big data and artificial intelligence in the various industrial domains. This paper proposes the IMOCO4.E reference framework for the smart integration of intelligent motion control with commercial platforms (e.g. from SMEs) and industrial systems. The IMOCO4.E reference framework brings together the architecture, data management, artificial intelligence and digital twin viewpoints from the industrial users of the large-scale 'Intelligent Motion Control under Industry4.E' (IMOCO4.E) consortium. The framework envisions a generic platform for designing, developing, and implementing novice and complex motion-controlled industrial systems. Refinements and instantiations of the framework for the IMOCO4.E industrial cases validate the framework's applicability for various industrial domains throughout the engineering phases and under different constraints imposed on the industrial cases. © 2023 IEEE.
Pilnais teksts: Synthetic_Image_Generation_With_a_Fine_Tuned_Latent_Diffusion_Model_for_Organ_on_Chip_Cell_Image_Classification